Firefly Mating Algorithm for Continuous Optimization Problems
نویسندگان
چکیده
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
منابع مشابه
Firefly Algorithm for optimization problems with non-continuous variables: A Review and Analysis
Firefly algorithm is a swarm based metaheuristic algorithm inspired by the flashing behavior of fireflies. It is an effective and an easy to implement algorithm. It has been tested on different problems from different disciplines and found to be effective. Even though the algorithm is proposed for optimization problems with continuous variables, it has been modified and used for problems with n...
متن کاملالگوریتم بهینه یابی جفت گیری زنبورهای عسل ( HBMO ) در حل مسائل بهینه سازی
Over the last decade, evolutionary and meta-heuristic algorithms have been extensively used as search and optimization tools in various problem domains, including science, commerce, and engineering. Ease of use and broad applicability may be considered as the primary reasons for their success. The honey-bee mating process has been considered as a typical swarm-based approach to optimization, i...
متن کاملA hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems
Firefly Algorithm (FA) is a nature-inspired optimization algorithm that can be successfully applied to continuous optimization problems. However, lot of practical problems are formulated as discrete optimization problems. In this paper a hybrid discrete firefly algorithm (HDFA) is proposed to solve the multi-objective flexible job shop scheduling problem (FJSP). FJSP is an extension of the clas...
متن کاملOPTIMAL DESIGN OF TRUSS STRUCTURES BY IMPROVED MULTI-OBJECTIVE FIREFLY AND BAT ALGORITHMS
The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvement...
متن کاملAn Efficient Meta Heuristic Algorithm to Solve Economic Load Dispatch Problems
The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to lim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017